Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(3): 109021, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361629

RESUMO

Nano-vesicular carriers are promising tissue-specific drug delivery platforms. Here, biomimetic proteolipid vesicles (BPLVs) were used for delivery of glycosylphosphatidylinositol (GPI)-anchored proteins to GPI deficient paroxysmal nocturnal hemoglobinuria (PNH) cells. BPLVs were assembled as single unilamellar monodispersed (polydispersity index, 0.1) negatively charged (ζ-potential, -28.6 ± 5.6 mV) system using microfluidic technique equipped with Y-shaped chip. GPI-anchored and not-GPI proteins on BPLV surface were detected by flow cytometry. Peripheral blood mononuclear cells (PBMCs) from healthy and PNH subjects were treated with BPLVs (final concentration, 0.5 mg/mL), and cells displayed an excellent protein uptake, documented by flow cytometry immunophenotyping and confocal microscopy. BPLV-treated cells stressed with complement components showed an increased resistance to complement-mediated lysis, both healthy and PNH PBMCs. In conclusion, BPLVs could be effective nanocarriers for protein transfer to targeted cells to revert protein deficiency, like in PNH disease. However, further in vivo studies are required to validate our preclinical in vitro results.

2.
Pharmaceutics ; 15(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38004530

RESUMO

Plastics have changed human lives, finding a broad range of applications from packaging to medical devices. However, plastics can degrade into microscopic forms known as micro- and nanoplastics, which have raised concerns about their accumulation in the environment but mainly about the potential risk to human health. Recently, biodegradable plastic materials have been introduced on the market. These polymers are biodegradable but also bioresorbable and, indeed, are fundamental tools for drug formulations, thanks to their transient ability to pass through biological barriers and concentrate in specific tissues. However, this "other side" of bioplastics raises concerns about their toxic potential, in the form of micro- and nanoparticles, due to easier and faster tissue accumulation, with unknown long-term biological effects. This review aims to provide an update on bioplastic-based particles by analyzing the advantages and drawbacks of their potential use as components of innovative formulations for brain diseases. However, a critical analysis of the literature indicates the need for further studies to assess the safety of bioplastic micro- and nanoparticles despite they appear as promising tools for several nanomedicine applications.

3.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894787

RESUMO

Tendon injuries caused by overuse or age-related deterioration are frequent. Incomplete knowledge of somatic tendon cell biology and their progenitors has hindered interventions for the effective repair of injured tendons. Here, we sought to compare and contrast distinct tendon-derived cell populations: type I and II tendon stem cells (TSCs) and tenocytes (TNCs). Porcine type I and II TSCs were isolated via the enzymatic digestion of distinct membranes (paratenon and endotenon, respectively), while tenocytes were isolated through an explant method. Resultant cell populations were characterized by morphology, differentiation, molecular, flow cytometry, and immunofluorescence analysis. Cells were isolated, cultured, and evaluated in two alternate oxygen concentrations (physiological (2%) and air (21%)) to determine the role of oxygen in cell biology determination within this relatively avascular tissue. The different cell populations demonstrated distinct proliferative potential, morphology, and transcript levels (both for tenogenic and stem cell markers). In contrast, all tendon-derived cell populations displayed multipotent differentiation potential and immunophenotypes (positive for CD90 and CD44). Type II TSCs emerged as the most promising tendon-derived cell population for expansion, given their enhanced proliferative potential, multipotency, and maintenance of a tenogenic profile at early and late passage. Moreover, in all cases, physoxia promoted the enhanced proliferation and maintenance of a tenogenic profile. These observations help shed light on the biological mechanisms of tendon cells, with the potential to aid in the development of novel therapeutic approaches for tendon disorders.


Assuntos
Traumatismos dos Tendões , Tendões , Animais , Suínos , Diferenciação Celular , Células-Tronco , Traumatismos dos Tendões/terapia , Oxigênio
4.
J Tissue Eng ; 14: 20417314231196275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719308

RESUMO

Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.

5.
Heliyon ; 9(6): e17141, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484299

RESUMO

Background: Contribution of peripheral blood mononuclear cells (PBMCs) in myogenesis is still under debate, even though blood filtration systems are commonly used in clinical practice for successfully management of critic limb ischemia. Objectives: A commercial blood filter used for autologous human PBMC transplantation procedures is characterized and used to collect PBMCs, that are then added to well-established 2D in vitro myogenic models assembled with a co-culture of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and skeletal myoblasts (hSkMs) whit the aim of investigating their potential contribution to stem cell myogenic commitment. Methods: A commercial blood filter was physically and chemically studied to understand its morphological characteristics and composition. PBMCs were concentrated using this system, further isolated by Ficoll-Paque density gradient centrifugation, and then added in an upper transwell chamber to a 2D co-culture of hBM-MSCs and hSkMs. Myogenic commitment was investigated by RT-PCR, immunofluorescence, and flow cytometry immunophenotyping. Cytokine levels were monitored by ELISA assay in culture media. Results: The blood filtration system was disassembled and appeared to be formed by twelve membranes of poly-butylene terephthalate fibers (diameters, 0.9-4.0 µm) with pore size distribution of 1-20 µm. Filter functional characterization was achieved by characterizing collected cells by flow cytometry. Subsequently, collected PBMCs fraction was added to an in-vitro model of hBM-MSC myogenic commitment. In the presence of PBMCs, stem cells significantly upregulated myogenic genes, such as Desmin and MYH2, as confirmed by qRT-PCR and expressed related proteins by immunofluorescence (IF) assay, while downregulated pro-inflammatory cytokines (IL12A at day 14) along the 21 days of culture. Novelty: Our work highlights chemical-physical properties of commercial blood filter and suggests that blood filtrated fraction of PBMC might modulate cytokine expression in response to muscle injury and promote myogenic events, supporting their clinical use in autologous transplantation.

6.
Molecules ; 28(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375406

RESUMO

Human malignant melanoma cells from lymph node metastatic site (MeWo) were selected for testing several synthesized and purified silver(I) and gold(I) complexes stabilized by unsymmetrically substituted N-heterocyclic carbene (NHC) ligands, called L20 (N-methyl, N'-[2-hydroxy ethylphenyl]imidazol-2-ylide) and M1 (4,5-dichloro, N-methyl, N'-[2-hydroxy ethylphenyl]imidazol-2-ylide), having halogenide (Cl- or I-) or aminoacyl (Gly=N-(tert-Butoxycarbonyl)glycinate or Phe=(S)-N-(tert-Butoxycarbonyl)phenylalaninate) counterion. For AgL20, AuL20, AgM1 and AuM1, the Half-Maximal Inhibitory Concentration (IC50) values were measured, and all complexes seemed to reduce cell viability more effectively than Cisplatin, selected as control. The complex named AuM1 was the most active just after 8 h of treatment at 5 µM, identified as effective growth inhibition concentration. AuM1 also showed a linear dose and time-dependent effect. Moreover, AuM1 and AgM1 modified the phosphorylation levels of proteins associated with DNA lesions (H2AX) and cell cycle progression (ERK). Further screening of complex aminoacyl derivatives indicated that the most powerful were those indicated with the acronyms: GlyAg, PheAg, AgL20Gly, AgM1Gly, AuM1Gly, AgL20Phe, AgM1Phe, AuM1Phe. Indeed, the presence of Boc-Glycine (Gly) and Boc-L-Phenylalanine (Phe) showed an improved efficacy of Ag main complexes, as well as that of AuM1 derivatives. Selectivity was further checked on a non-cancerous cell line, a spontaneously transformed aneuploid immortal keratinocyte from adult human skin (HaCaT). In such a case, AuM1 and PheAg complexes resulted as the most selective allowing HaCaT viability at 70 and 40%, respectively, after 48 h of treatment at 5 µM. The same complexes tested on 3D MeWo static culture induced partial spheroid disaggregation after 24 h of culture, with almost half of the cells dead.


Assuntos
Antineoplásicos , Complexos de Coordenação , Compostos Heterocíclicos , Melanoma , Humanos , Complexos de Coordenação/química , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Cisplatino/farmacologia , Metano/química , Melanoma/tratamento farmacológico , Compostos Heterocíclicos/química , Linhagem Celular Tumoral
7.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675021

RESUMO

Electrospun systems are becoming promising devices usable for topical treatments. They are eligible to deliver different therapies, from anti-inflammatory to antitumoral. In the current research, polycaprolactone electrospun membranes loaded with synthetic and commercial antitumoral active substances were produced, underlining how the matrix-filler affinity is a crucial parameter for designing drug delivery devices. Nanofibrous membranes loaded with different percentages of Dacarbazine (the drug of choice for melanoma) and a synthetic derivative of Dacarbazine were produced and compared to membranes loaded with AuM1, a highly active Au-complex with low affinity to the matrix. AFM morphologies showed that the surface profile of nanofibers loaded with affine substances is similar to one of the unloaded systems, thanks to the nature of the matrix-filler interaction. FTIR analyses proved the efficacy of the interaction between the amidic group of the Dacarbazine and the polycaprolactone. In AuM1-loaded membranes, because of the weak matrix-filler interaction, the complex is mainly aggregated in nanometric domains on the nanofiber surface, which manifests a nanometric roughness. Consequently, the release profiles follow a Fickian behavior for the Dacarbazine-based systems, whereas a two-step with a highly prominent burst effect was observed for AuM1 systems. The performed antitumoral tests evidence the high-cytotoxic activity of the electrospun systems against melanoma cell lines, proving that the synthetic substances are more active than the commercial dacarbazine.


Assuntos
Melanoma , Nanofibras , Humanos , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Anti-Inflamatórios , Excipientes , Dacarbazina/farmacologia , Melanoma/tratamento farmacológico , Liberação Controlada de Fármacos
8.
Heliyon ; 8(12): e11998, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36478848

RESUMO

Hematopoietic stem cell (HSC) maintenance in vitro is challenging because stem cell survival relies on cell-to-cell contacts and paracrine signals from bone marrow (BM) microenvironment. Indeed, HSCs easily differentiate in conventional culture systems, and in vitro study of stem cell biology, leukemogenesis, and evolutionary trajectories is limited. 3D-culture systems can mimic tissue architecture and microenvironment thus preserving HSC phenotype. In this study, we developed a calcium alginate hydrogel-based 3D co-culture system of BM mononuclear cells (BMMCs) and BM-derived mesenchymal stem cells (BM-MSCs) to study hemopoiesis in health and disease, such as biological roles of c-Kit M541L somatic mutation of unknown significance. BMMCs and peripheral blood stem cells were obtained from an acute myeloid leukemia patient who experienced graft failure and his haploidentical donor, and from a healthy donor. Cells embedded in alginate scaffolds were cultured for up to 21 days, and flow cytometry immunophenotyping was performed at baseline and every seven days. Our results showed suitability of our 3D culture system in preserving HSC vitality and phenotype throughout the culture period, and also in maintaining composition and vitality of total BMMCs. Moreover, 3D in vitro culture results suggested that M541L c-Kit somatic mutation could be a loss-of-function alteration by reducing HSC maintenance ability thus quickly promoting differentiation, as documented by in vivo graft failure and in vitro absence of long-term culture stability. In conclusions, our 3D BM-like biomimetic culture system allowed long-term stemness maintenance, making it a valid and effective tool for in vitro study of physiological and pathological hemopoiesis.

9.
Front Bioeng Biotechnol ; 10: 986310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225603

RESUMO

In this study, chondrogenic potentials of 3D high-density cultures of Bone Marrow (BM) and Wharton's Jelly (WJ)-derived mesenchymal stromal cells (MSCs) was investigated by chondrogenesis- and cytokine-related gene expression over a 16-day culture period supplemented with human transforming growth factor (hTGF)-ß1 at 10 ng/ml. In BM-MSC 3D models, a marked upregulation of chondrogenesis-related genes, such as SOX9, COL2A1, and ACAN (all p < 0.05) and formation of spherical pellets with structured type II collagen fibers were observed. Similarly, WJ-based high-density culture appeared higher in size and more regular in shape, with a significant overexpression of COL2A1 and ACAN (all p < 0.05) at day 16. Moreover, a similar upregulation trend was documented for IL-6 and IL-10 expression in both BM and WJ 3D systems. In conclusion, MSC-based high-density cultures can be considered a promising in vitro model of cartilage regeneration and tissue engineering. Moreover, our data support the use of WJ-MSCs as a valid alternative for chondrogenic commitment of stem cells in regenerative medicine.

10.
Pharmaceutics ; 14(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36145500

RESUMO

Herein, the synthesis and characterization of a novel composite biopolymer scaffold-based on equine type I collagen and hyaluronic acid-were described by using a reaction in heterogeneous phase. The resulting biomimetic structure was characterized in terms of chemical, physical, and cytotoxicity properties using human-derived lymphocytes and chondrocytes. Firstly, FT-IR data proved a successful reticulation of hyaluronic acid within collagen structure with the appearance of a new peak at a wavenumber of 1735 cm-1 associated with ester carbonyl stretch. TGA and DSC characterizations confirmed different thermal stability of cross-linked scaffolds while morphological analysis by scanning electron microscopy (SEM) suggested the presence of a highly porous structure with open and interconnected void areas suitable for hosting cells. The enzymatic degradation profile confirmed scaffold higher endurance with collagenase as compared with collagen alone. However, it was particularly interesting that the mechanical behavior of the composite scaffold showed an excellent shape memory, especially when it was hydrated, with an improved Young's modulus of 9.96 ± 0.53 kPa (p ≤ 0.001) as well as a maximum load at 97.36 ± 3.58 kPa compared to the simple collagen scaffold that had a modulus of 1.57 ± 0.08 kPa and a maximum load of 36.91 ± 0.24 kPa. Finally, in vitro cytotoxicity confirmed good product safety with human lymphocytes (viability of 81.92 ± 1.9 and 76.37 ± 1.2 after 24 and 48 h, respectively), whereas excellent gene expression profiles of chondrocytes with a significant upregulation of SOX9 and ACAN after 10 days of culture indicated our scaffold's ability of preserving chondrogenic phenotype. The described material could be considered a potential tool to be implanted in patients with cartilage defects.

11.
Pharmaceutics ; 14(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36015250

RESUMO

Flavonoids are polyphenolic compounds largely present in fruits and vegetables possessing antioxidant properties, anti-inflammatory and antibacterial activities. Their use in clinical practice is very poor due to their low bioavailability, susceptibility to oxidation and degradation. Moreover, their slight solubility in biological fluids and a consequent low dissolution rate leads to an irregular absorption from solid dosage forms, even though, anti-inflammatory formulations could be used as support for several disease treatment, i.e. the COVID-19 syndrome. To improve flavonoid bioavailability particle size of the powder can be reduced to make it breathable and to promote the absorption in the lung tissues. Supercritical fluid based antisolvent technique has been used to produce naringin particles, with size, shape and density as well as free flowing properties able to fit inhalation needs. The dried particles are produced with the removal of the solvent at lower temperatures compared to the most used traditional micronization processes, such as spray drying. The best breathable fraction for naringin particles is obtained for particles with a d50~7 µm manufactured at 35 °C-150 bar and at 60 °C-130 bar, corresponding to 32.6% and 36.7% respectively. The powder is produced using a high CO2 molar fraction (0.99) that assure a better removal of the solvent. NuLi-1 cell line of immortalised bronchial epithelial cells adopted to evaluate powder cytotoxicity indicated after 24 h absence of toxicity at concentration of 25 µM.

12.
Int J Mol Sci ; 23(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806152

RESUMO

Two non-commercial metallic Au-based complexes were tested against one of the most aggressive malignant melanomas of the skin (MeWo cells), through cell viability and time-lapse live-cell imaging system assays. The tests with the complexes were carried out both in the form of free metallic complexes, directly in contact with the MeWo cell line culture, and embedded in fibers of Polycaprolactone (PCL) membranes produced by the electrospinning technique. Membranes functionalized with complexes were prepared to evaluate the efficiency of the membranes against the melanoma cells and therefore their feasibility in the application as an antitumoral patch for topical use. Both series of tests highlighted a very effective antitumoral activity, manifesting a very relevant cell viability inhibition after both 24 h and 48 h. In the case of the AuM1 complex at the concentration of 20 mM, melanoma cells completely died in this short period of time. A mortality of around 70% was detected from the tests performed using the membranes functionalized with AuM1 complex at a very low concentration (3 wt.%), even after 24 h of the contact period. The synthesized complexes also manifest high selectivity with respect to the MeWo cells. The peculiar structural and morphological organization of the nanofibers constituting the membranes allows for a very effective antitumoral activity in the first 3 h of treatment. Experimental points of the release profiles were perfectly fitted with theoretical curves, which easily allow interpretation of the kinetic phenomena occurring in the release of the synthesized complexes in the chosen medium.


Assuntos
Melanoma , Nanofibras , Apoptose , Ouro/farmacologia , Humanos , Membranas , Nanofibras/química , Poliésteres/química
13.
Pharmaceutics ; 14(7)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35890335

RESUMO

In this Issue, I have collected ten research papers and four review articles trying to describe the technologies that have evolved in the past ten years for the development of micro and nano systems for drug carry, targeting and delivery [...].

14.
Front Bioeng Biotechnol ; 10: 1075715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704300

RESUMO

In this work, a 3D environment obtained using fibrin scaffold and two cell populations, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), and primary skeletal muscle cells (SkMs), was assembled. Peripheral blood mononuclear cells (PBMCs) fraction obtained after blood filtration with HemaTrate® filter was then added to the 3D culture system to explore their influence on myogenesis. The best cell ratio into a 3D fibrin hydrogel was 1:1 (BM-MSCs plus SkMs:PBMCs) when cultured in a perfusion bioreactor; indeed, excellent viability and myogenic event induction were observed. Myogenic genes were significantly overexpressed when cultured with PBMCs, such as MyoD1 of 118-fold at day 14 and Desmin 6-fold at day 21. Desmin and Myosin Heavy Chain were also detected at protein level by immunostaining along the culture. Moreover, the presence of PBMCs in 3D culture induced a significant downregulation of pro-inflammatory cytokine gene expression, such as IL6. This smart biomimetic environment can be an excellent tool for investigation of cellular crosstalk and PBMC influence on myogenic processes.

16.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639203

RESUMO

In severe muscle injury, skeletal muscle tissue structure and functionality can be repaired through the involvement of several cell types, such as muscle stem cells, and innate immune responses. However, the exact mechanisms behind muscle tissue regeneration, homeostasis, and plasticity are still under investigation, and the discovery of pathways and cell types involved in muscle repair can open the way for novel therapeutic approaches, such as cell-based therapies involving stem cells and peripheral blood mononucleate cells. Indeed, peripheral cell infusions are a new therapy for muscle healing, likely because autologous peripheral blood infusion at the site of injury might enhance innate immune responses, especially those driven by macrophages. In this review, we summarize current knowledge on functions of stem cells and macrophages in skeletal muscle repairs and their roles as components of a promising cell-based therapies for muscle repair and regeneration.


Assuntos
Macrófagos/citologia , Músculo Esquelético/citologia , Doenças Musculares/terapia , Medicina Regenerativa , Células-Tronco/citologia , Animais , Humanos , Imunidade Inata , Macrófagos/fisiologia , Músculo Esquelético/fisiologia , Células-Tronco/fisiologia
17.
Pharmaceutics ; 13(9)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575523

RESUMO

The present work described a bio-functionalized 3D fibrous construct, as an interactive teno-inductive graft model to study tenogenic potential events of human mesenchymal stem cells collected from Wharton's Jelly (hWJ-MSCs). The 3D-biomimetic and bioresorbable scaffold was functionalized with nanocarriers for the local controlled delivery of a teno-inductive factor, i.e., the human Growth Differentiation factor 5 (hGDF-5). Significant results in terms of gene expression were obtained. Namely, the up-regulation of Scleraxis (350-fold, p ≤ 0.05), type I Collagen (8-fold), Decorin (2.5-fold), and Tenascin-C (1.3-fold) was detected at day 14; on the other hand, when hGDF-5 was supplemented in the external medium only (in absence of nanocarriers), a limited effect on gene expression was evident. Teno-inductive environment also induced pro-inflammatory, (IL-6 (1.6-fold), TNF (45-fold, p ≤ 0.001), and IL-12A (1.4-fold)), and anti-inflammatory (IL-10 (120-fold) and TGF-ß1 (1.8-fold)) cytokine expression upregulation at day 14. The presented 3D construct opens perspectives for the study of drug controlled delivery devices to promote teno-regenerative events.

18.
Pharmaceutics ; 13(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802877

RESUMO

Tissue engineering strategies can be relevant for cartilage repair and regeneration. A collagen matrix was functionalized with the addition of poly-lactic-co-glycolic acid microcarriers (PLGA-MCs) carrying a human Transforming Growth Factor ß1 (hTFG-ß1) payload, to provide a 3D biomimetic environment with the capacity to direct stem cell commitment towards a chondrogenic phenotype. PLGA-MCs (mean size 3 ± 0.9 µm) were prepared via supercritical emulsion extraction technology and tailored to sustain delivery of payload into the collagen hydrogel for 21 days. PLGA-MCs were coseeded with human Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) in the collagen matrix. Chondrogenic induction was suggested when dynamic perfusion was applied as indicated by transcriptional upregulation of COL2A1 gene (5-fold; p < 0.01) and downregulation of COL1A1 (0.07-fold; p < 0.05) and COL3A1 (0.11-fold; p < 0.05) genes, at day 16, as monitored by qRT-PCR. Histological and quantitative-immunofluorescence (qIF) analysis confirmed cell activity by remodeling the synthetic extracellular matrix when cultured in perfused conditions. Static constructs lacked evidence of chondrogenic specific gene overexpression, which was probably due to a reduced mass exchange, as determined by 3D system Finite Element Modelling (FEM) analysis. Proinflammatory (IL-6, TNF, IL-12A, IL-1ß) and anti-inflammatory (IL-10, TGF-ß1) cytokine gene expression by hBM-MSC was observed only in dynamic culture (TNF and IL-1ß 10-fold, p < 0.001; TGF-ß1 4-fold, p < 0.01 at Day 16) confirming the cells' immunomodulatory activity mainly in relation to their commitment and not due to the synthetic environment. This study supports the use of 3D hydrogel scaffolds, equipped for growth factor controlled delivery, as tissue engineered models for the study of in vitro chondrogenic differentiation and opens clinical perspectives for injectable collagen-based advanced therapy systems.

19.
Front Bioeng Biotechnol ; 9: 649288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777919

RESUMO

Regenerative medicine has greatly progressed, but tendon regeneration mechanisms and robust in vitro tendon differentiation protocols remain to be elucidated. Recently, tendon explant co-culture (CO) has been proposed as an in vitro model to recapitulate the microenvironment driving tendon development and regeneration. Here, we explored standardized protocols for production and storage of bioactive tendon-derived secretomes with an evaluation of their teno-inductive effects on ovine amniotic epithelial cells (AECs). Teno-inductive soluble factors were released in culture-conditioned media (CM) only in response to active communication between tendon explants and stem cells (CMCO). Unsuccessful tenogenic differentiation in AECs was noted when exposed to CM collected from tendon explants (CMFT) only, whereas CMCO upregulated SCXB, COL I and TNMD transcripts, in AECs, alongside stimulation of the development of mature 3D tendon-like structures enriched in TNMD and COL I extracellular matrix proteins. Furthermore, although the tenogenic effect on AECs was partially inhibited by freezing CMCO, this effect could be recovered by application of an in vivo-like physiological oxygen (2% O2) environment during AECs tenogenesis. Therefore, CMCO can be considered as a waste tissue product with the potential to be used for the development of regenerative bio-inspired devices to innovate tissue engineering application to tendon differentiation and healing.

20.
Int J Pharm ; 592: 120108, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33238193

RESUMO

Controlled delivery of human growth factors is still a challenge in tissue engineering protocols, and poly-lactic acid and poly-lactic-co-glycolic acid carriers have been recently proposed for this purpose. Here, the microencapsulation of two human growth factors, namely Growth Differentiation Factor -5 (hGDF-5) and Transforming Growth Factor ß1 (hTGF-ß1) was tested, by processing different emulsions with Supercritical Emulsion Extraction (SEE) technology. Polymer molecular weight, co-polymer ratio and surfactant amount in aqueous phases as well as phases mixing rate were varied to fabricate carriers with suitable size and loadings. Carriers with different mean sizes from 0.4 ± 0.09 µm up to 3 ± 0.9 µm were obtained by SEE technology when processing emulsions with different formulations; carriers were loaded with 3 µg/g and 7 µg/g for hGDF-5 and hTGF-ß1 with controlled growth factor release over 25 days. Carriers displayed extremely low cytotoxicity when evaluated in Chinese Hamster Ovary cells (CHO-K1). Further, they also exhibited reduced cytotoxicity with respect to carriers obtained by conventional evaporation techniques, and low reactivity on human peripheral blood mononuclear cells (hPBMCs), suggesting their safety and potential use in tissue engineering protocols.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Animais , Células CHO , Cricetinae , Cricetulus , Portadores de Fármacos , Emulsões , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Leucócitos Mononucleares , Microesferas , Tamanho da Partícula , Poliésteres , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...